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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAT. MEMORANDUM NO. 1205

EXACT CALCULATION OF LAMINAR BOUNDARY LAYER IN
LONGITUDINAL FLOW OVER A FLAT PLATE
WITH HOMOGENEOUS SUCTION*
By Rudolf Iglisch

1. Statement of the Problem and Introduction

lately 1t has been proposed (reference 1) to reduce the friction drag
of a body in a flow for the technically lmportant large Reynolds numbers
by the following expedient: the boundary layer, normally turbulent, is
artificially kept laminar up to high Reynolds numbers by suction. The
reduction In frictlion drag thus obtalned 1s of the order of magnitude
of 60 to 80 percent of the turbulent friction drag, since the latter, for
large Reynolds numbers, 1s several times the laminar friction drag. In
congldering the ldea mentloned one has first to cdédnsider whether suction
1s & posslble means of keeplng the boundary layer laminar. This question
can be answered by a theoretical investigation of the stability of the
laminar boundary layer with suction. A knowledge, as accurate as
possible, of the velocity distribution in the laminer boundary layer wilth
suction forms the starting point for the stability investigation.
H. Schlichting (reference 2) recently gave a survey of the present state
of calculation of the laminsr boundery layer with suction.

The classlc example for Prandtl's theory of the boundary layer
without suctlon (reference 3) is the boundary layer, calculated by
H. Blasius (reference L), which develops on an infinitely extended flat
plate in longltudinal flow. Agalin and ageln one reverte for comparison
to this example, even where the lay—out of the problems 1s entirely
different. Study of the flow along the flat plate will thus have the
same Importance and signiflcance for the boundary layer with suction or
blowing. The developing boundary layer will, of course, no longer depend
only on the shape of the body immersed in the flow — & plate in the present
study ~ but also on the manner of suctlon or blowlng. The case of

*wpyakte Berechnung der leminaren Grenzschicht an der ldngs—
angestrémten ebenen Platte mit homogener Absaugung.” Schriften der Deutschen
Akademie der Luftfahrtforschung, Band 8 B, Heft 1, 194h. Report of the
Mathemaetical Institute of the Technical Academy Braunschwelg. Presented
to the German Academy of Avaltlion Research by the corresponding member
Hermann Schlichting on January 26, 194k,
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continuous suctlon wlth constant suction velocity will be of particular
theoretlcal importance; it 1s numericelly calculated in detall in the
present report and for the general case of arbltrary suction or blowing
the complete system of formulas l1s glven with which the numsrical
calculation may be performed 1ln exactly the same manner.

The plate 1s assumed to extend an infinlte distance 1n the x direction,
starting at the origln of coordinates (fig. 1). For negative x the flow
is then undisturbed; thus u = Uy, v = 0, where u end v signify the

veloclty components in the x and y dlrection, respectively, and Ub 1s the
free stream veloclty, The equation

v(x,0) = vo(x) (1)

glves the prescrilibed suction law: vc(x) < 0 slgnifies suction,

vo(x) > 0 blowing. The condition u(x,0) =0 at the wall is also to

be mainteined for the boundary layer with suction or blowing. Prandtl's
boundary layer equations (references 4 and 5) (with the sink effect
neglected) read

u §§-+ v g? = gi%- (2)
§+%=0 (3)

v slgnifies the kinematic viscosity. The boundary conditions (Pfig. 2)

u(x,0) = 0, v(x,0) = vo(x), u(x,®) = Uy, u(0,5) = U, (%)

also have to be satisfied. A special very simple solution of the system
of equations (2) to (1) with the exception of the fourth boundary condition
(4) can be given for the case of continuous homogensous suction; that 1s
for vo(x) = vo = const.< O. In this case, according to H. Schlichting,

(reference 6)
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w(z,y) = U°€ - 7 >, v(x,7) = v, | (5)

Thus, veloclty distribution and hence also boundary layer thickness and
all remaining boundary layer paramsters are independent -of the distance
along the plate x for this solution; it i1s called the asymptotic
golution.

For a plate provided with homogensous suctlon begimning at the
leading edge the boundary layer which starts in front with zero thickness
must be transformed, after a certain distance, Into this asymptotic
golution. Thls distance in particular will be treated in detall below.

In the first chapter (paragraphs 2 to 5) the general equations for

the solution of the complete problem (equations (2), (3), and (4)) are
set up; in chapter two (paragraphs 6 to 18) .the case v, (x) ~ v,

with v, < O, that is, the case of constant suction, is treated numerically.

The calculation methods described here can, of course, be applied also in
the case of a general suctlon law. PFurthermore, the validlty of these
considerations is,.naturally, not limited to the flow over a platel; the
numerical methods described may be used also forr airfoil profiles.

I. THE GENERAL SYSTEM OF FORMULAS
2.Elilmination of thé Kinematic Viscosity v and

the Free Stream Velocity Uj,
The equations (2) and (3) are simplified, if one inserts
X = xlv; y= 3:1\) (5)
with
uy(z,,57) = w(x,y) and Vy(x,37) =v(x,5)

to

‘Irhis investigation has been suggested to me by Mr. H. Schlichting.
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)
13 TS, e
oxy oy, 9y

} __ (7)
iul.’. ﬁ.: 0
dx; Oy

according to equation (4) the boundary conditions

v, (x;,0) = 0, v,(x),0) =v_(xv) =ve1(x)),

(8)
w (x,,%) =U_, v (0,73;) =T,

also are to be satisfled. If one makes the new siubstltution

N
X2 =f"x1: T2 = J1»
o ' (9)
uQ(xQ:YQ) = Bg‘ ul(xl:yl), v2(x2:y2) =vl(xl:yl):
o
/

equation (7) 1s transformed into

dp g o Fup |
Uy S5, + Vg Bye ay22 (10)
?‘—12—+—a-:2-=0 (11)



&l

NACA T™ No. 1205

with the boundary conditions according to (8)

us(x5,0)

0, Vo(x,0) = vol(% x2> = vop(xp),

(12)
us(%5,°) = 2, us(0,yp) =2

3. Introduction of the Stream Function.1F2 as

Independent Varleble in Addition to Xy
If one puts

Vo (13)
R oxp

equation (11) is automatically satisfied. With

up(xo,y2) = Uo(¥o,xp)

(1)
equation (10) is transformed into
2
U, _ 82U2_U2 . <BU2
oxp P oo
which is equivalent to the equation
2 3,2

(see reference 7, p. 847, formula 9.)1f one puts

2(¥o,%) = Up=(Vp,%p,) (16)
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Because of equations (12), (13), ana (16), the following boundary conditions
(cf. fig. 3 where a sink distribution 1s assumed) must be satisfied, aside
from (15):

Z(“JXQ) =4 = Z(\FQ:O), Z I_:__f(xQ):xQ:I =0 (17)
with

Xp
f(xp) = -\ﬁ) Vo2(xp)dxp (18)

The reconversion from the coordinates WE, X, to x5, Jp 18 made according
to (13) by
¥ L4
2 a¥, 2 av,
e e (19)

y2 = = e
£(x,) UalV2,2p0) £(xy) \ 2V2s%p)

(for constant xp).

4, Simplification of the Limits of the Reglon of Integration

The region of integretion obtains stralght—line boundaries only, if
one introduces instead of X5 and ﬁa the new varlables

X

8 = V2 —f(xe), n1 =| F(x) dxp (20)
0

with

F(xp) = \}l + f'a(xg) (21)

(cf. fig. 4). One may write the second equation (20) abbreviatedly in
the form
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n; = s(x,) with the solution =X, = 8(n1)

With
z(*exxe) = Z(gl’ﬂl)
because of

ég_ =_§Z_ f'(xe) + a_z_ F(xg)’ .a..z_ = %—

ax2 agl 6111 5’1’2 Bﬁl
equation (15) becomes

~ &L rr(zy) + B Wxp) = VE L
S TR 5 xe. .2

If one deslgnates, according to (22),
- (x,) = £ [S(ﬂl)] = a(ny),

F(xp) = Fls(ny)] = vm),
equation (24) becomes

(n2) &+ b(ny) - = vz L2

Furthermore, according to (17) the boundary conditions (cf. fig. 5)

z( °°;Tll) =k = Z(glso)’ Z(O:Tll) =0

mugt be satisfied.

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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5. Elimination of the Discontinulty in
the Boundary Conditlons

We shall introduce

4 =3_i_: and Y =g,
as new variable. With
T(¢,Y) = Z(&) ,ny)
one calculates
2 _xi Pz _Pri1x __1xli.x
3k Ol VI 352 32 Y oy 238 Y oY

Hence (27) becomes

o 1 & gz
ag{%mﬁ 2b(Y)§+n(y) z \/‘T‘agg

According to (28), the boundary conditions
T(w,Y) = 4, T(0,Y) =0

must be satigfied.

Finally, & last simplification 1s obtainable by introduction of

T = Vﬂj and g = V@F

(29)

(30)

(31)

(32)

(33)
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With

| V(r,0) =T ,Y) (3%)
one calculates

AT 3T X 20 32 4t

equation (31), with

a(Y)Y = a(c®)o = A(o)

(35)
b(Y) = () = B(o)

becomes
L B(a) 2 Ly 1 &afz_iéz
37 o1 [%( ) - R 623(6) 20 B q_— T2 @ yr

or

ﬁi?:g + g [- 2TA(0) + B(o)TS — %\lﬂ = 2726B(0) % (36)

According to (32), the bowndary conditions (flg. 6)

V(oo,o-) = )'l': V(O,U) =0 (37)

algo must be satisfiled.

The numerical treatment of the problem (equations (36) and (37)) can
take place In exactly the same way as that of the special case of constant
suction veloclty, treated in detall in the next chapter.

)
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II. THE CASE OF HOMOGENEOUS SUCTION

6. Speciaslization to Homogeneous Suction
Thus we put from now on

vo(x) = v, Wwith v°< 0

Then one obtains according to (18)
£(x3) = =%
according to (21)

F(xs) = \J1 + V_oE

according to (20) and (22)
= + V 2 x X —.___JHL_.
m =\ T2 3, X, 5
l+'\r0

according to (25)

a(nl) =V,

and according to (26)
b(ny) = +\1 + v°2

The differential equation (24) is therefore transformed into

voa_Z_.+ V1 + VOQ%‘Z_=\/Z§_2;Z_2.

Bgl 1 agl

with the boundary conditions (28).

(38)

(39)

(40)

(41)

(42)

(%3)

(k)
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For further considerations, in order to become independent of v,

one introduces, slightly different from the procedure In the general case
(paragraph 5), first as new independent coordinates

2 v o2 |
X =—ef] ==Voby, Y=g = ————1n, (45)
With
R(X,Y) = Z(4),m) (46)
equation (44) then becomes
- %E + % -\VE %:.g- (¥7)
according to (28) the boundary conditions
R(=,Y) = % = R(X,0), R(0,Y) =0 (48)
also must be satisfied.
In analogy to (29) one now uses
t =2 and Y (19)

Pl

then according to (33) T and o as independent variables and thus
obtains instead of (36) ths differential equation

W§+-§§(2Ta+13—%ﬁ)=2ﬁc% (50)

with the boundary condltions (37).



12 NACA T No. 1205

7. The Series Development in Powers of o

Equation (50) 1s & nonlinear parabolic differential equation of the
second order. Usually for problems of this kind (for instance for the
equation of heat conduction) the velues, for instance, of V are
prescribed even for o = 0; the reason that they are not prescribed here
is probably that oV/dc contains the factor ¢ which, for o-> O, tends
toward zerc. Thus o = 0 1s a singwlarity of the differentlial equation.
More important conclusions will result from this fact. In order to find
out whether in spite of it the problem (equations (50) and (37)) can be
regularly resolvable in the neighborhood of o = O, one sets up the serles
development '

V(7,0) = Vo(T) + V(7)o + V‘2(T)o2 + e v e (51)

There follows from it

1V 1V 1 V12
VW = ‘rv _— =t =} ®+... 2
°+2W56+2\ﬁ; 8 [ 3 * (52

o

Comparison of coefficients of the terms not containing o in (50) glves

VToTo!t + To! <T3 - ﬂ) -0 (53)

1f the prime slgnifles the differentiation of Vb with respect to the

only variable T, Aslde from thlis nonlinear ordinary differential equatlon
of the second order, according to (37) the boundary conditions

Vo(0) = 0, Vo(w) = & (54)

also have to be satisfled.

For the special case Vo = O one has the problem of the plate in

longitudinel flow without suction as 1t has been solved already by Blasius
(reference 4). For this problem the corresponding quantities of which
will always be designated by an asterisk is, according to (42) and (43),

a*¥(ny) = 0, b*(ny) =1 (55)
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so that (27) 1s transformed into

X _ \[zx Ezx (56)
ony %,

If one performs instead of (45) the ldentical transformation

x=§l, Y=Tll, R¥ = Z¥% (57)

equation (56) becomes instead of (47)

= \R* :i;‘* (58)

Furthermore one performs the same transformations as in paragraph 6 and
obtains instead of (50)

with the boundary conditions (37). This problem has a solution

T* = V*(7) (60)
whlch is independent of o and determined by

\x TR v*'<~r3 -%\{v_g =0, V*(0) = 0, V¥(w) = k4 (61)

This is ths well—-known solution of Blaslus.

Comparison of (61) on one hand with (53) and (54) on the other hand
shows

VolT) =‘§*(T) (62)
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One knows (and can verify it immediastely by power series development
for (61)) that

Wolr) =T (@) = am + axr2+ . .. (63)

thus

VB(T) = V¥(1) = a 272

1 + 2a13273-+ .. (64)

One now determines the coefficient Vi(T) in the development (51).
Comparison of .coefficients of the power o in (50) gives

or

According to (37), because of (54), the boundary conditions

V1(0) = 0 = V(=) (66)

also have to be satisfied. If ome uses for \/Vi(T) in analogy to (63)

the expression
V() =20+ 572w ol L, Ty = 2272 h obybpr3 s L L (67)

comparison of coefficients for the coefficient of T necesparily glves
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2 2

: 2a Pa

a12b1% — 20 % + ble(% a.l “% al ) =0
1 1

since one parameter must be kept avallable for the fulfilment of the second
boundary condition (66). For the further coefficlemnts by with v > 1 one

obtains qualifying equations. The further coefficients Vﬁ(t) with p >1

in (51) also could be determined in this manner; however, this way would be
too troublesoms. We shall therefore choose another method.

The fundamentally important result of this paragraph is the knowledge
of V¥(T,0) = Vy(7) = V*(7). According to it, any method of profile

continuation (as it was developed for instance by L. Prandtl (reference 8),

H. GOrtler (reference 9) and K. Schrdder (reference 10) is applicable for

the treatment of the problem (50), (37). However, if the expenditure of
calculation times 1s not considerably Increased, these methods have too

1little eccuracy, particularly in the derlivatives with respect to T.

Since, in the Interest of & stabllity invéstigatlon for not too large values
of o, (see references 11 and 12) and, for the stability investigation of

the present problem, (reference 13) the second derivatives of V(T,0)

wlth respect to T also are required, the application of the two methods

to be described below 1is Justified: tho they require more tlime expenditure
then the methods described in references 8, 9, and 10, they have the advantage
of glving the derivatives of the velocity component wu wilth respect to the
transverse directlion with a relatlvely high accuracy. But also aside from
the stabllity investlgatlion the present problem is of such basic signifi-
cance that the deslre for greater accuracy of the velocity distribution

1s sufficlently Justiflied, Inversely, the two methods in question can of
course be used for contlnuation of arbitrarlly prescribed veloclty profilles.

8. A First Approximation Method

V(7o) = V(7)) will be approximately calculated for cbnstant ¢
according to (50) under the assumption that V(7,0 — k) = V(T) 1is known;
for o —k =0 this assumption is correct. Omne replaces in (50)
dV/dc approximately by the difference quotient (V — V)/k; if k is
small, ons may furthermore put V ®V; this will be done in (50) every—
where V appears in a power superior to 1. One then obtains Prom (50)
the following equation for the linsar approximation

2
ﬁv,.+<270+73_% Tt = 20 (v - T) (68)
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Furthermore, according to (37) the boundary conditions
V(0) = 0, V(=) = & (69)

have to be satisfled. The consilderations of paragraph 7 lead to the series
development In powers

m - clT + 021-2 + c3-r3 -+ cl'.‘l'll' + v . (70)
thus
V() = 4572 4 dg73 + dh'rl" + d5T5 FI (71)

assuming as anslogous

Qv== aIT 4+ o« & o« + agrh + o s

(72)
5

-vﬁ='b272+...+'b51' + ¢ e s

in the case o0 — k =0 this expression according to (63) and (64) is
Justified. The a4 and b, are connected by the formulas

b2 = &12 a; = JEE. ’-kw

b3:251

b3 = 2a1a2 as
(73)

by = 2a183 + ap® &g = (b — ay2):2e) &

(b5 —'2a2a3):2al

o
=
"

28.]_&1‘_ + 2&2&3
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Comparison with the coefficients in (68) ylelds for calculation of

the dv the formulas

Te' 2 X 381d3 + 1 X 2apdy + 2d5(20 — ay) — 3dgey = 0

3

3 X hagdy + 2 X 3apdy + 1 X 2agdy — 2a3d, + 3d3(20 - &)

- )-l-&ld)_‘_ = 0

Th|lh X 581d5 + 3 X hand) + 2 X 3a3d3 + 1 X 2apd, + 2d2(l - au)

— 3agdg + 4dy(20 — ay) — Seqd5 = (4, — bylo/k

Further calculation ylelds the followling formulas for.determination
of dy:

hody )
d3 =—
35-]_
3dz(as + 20)
dy =— 3 B
1
i =_8c11|_(a.2 + 0) — 3d3a3 ~ 245(1 — o/k) — 2byo/k > (74)

ls&l
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The further numerical treatment will be discussed in paragraph 12.
9. Variables Sulitable for Tabulatlion
We shall now conglder what dimensionless varisbles are most suitable

as characteristics and what connection they have with the coordinates T
end o forming the basis of our calculation. We shall in

V(T:U) = UQ(T:U) (75)

again Introduce the original variables. According to (33), (49), and (L45)

Uhﬂ)=mﬁwﬁ=u6ﬁ§ﬁ§

v T, F_E;_
- 3
(o)
i+ v 2
vo [ m 1+ 7,
Nl + Vo2

thus

(76)

U(T,0) =T (77)

From (19) one concludes with (39)
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¥o
T2 = (78)
—Vo¥2
for constant xa. Here
T2 =w, orar = 2 (79)

=2 V=

we shall introduce as new integration varlable

Tg T

.
= [ - 80
72 Q\FCEj; U(7 ,0) (50

for constant o. According to (16), (14) and the following transformation
equations as well as (75) one concludes

U(r,0) = Up(V,,x,) = uy(x,,7,) (81)

According to (9) one obtains further

UO Exl ) UO 8
ul(xl:lJ;Yl) = ? u2<?03 yl- = ? U(T Jc) . ( 2)

If one, furthermore, takes (6) into consideration, one has between the
original coordinates x,y and the end coordinates T,0 the connection
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g =g Xo = —Vo"ﬁ% J[l = ~Vo I?—Q—% (83)

. ™
V¥, v
T = _2_1__9fg, y=Vy=Vy, =@ ¢§5 _Tar
Vie u(r,0)
0 (8k4)
.
- 2oV TAT
o U(T:G) D
Due to (84) and (83),
VT
_‘v'oy Td_T
= e— = D
TEVOTH | @)
and. ' t(85)
R i Uox _ o \[Tox _ 1
‘Iﬁ; v U, \{-v Q\v >

are therefore advisable as dimensionless variables. (Cq ‘”o/Ub) is the
go—called mass coefficient of the suction, defined by Q = Vbl = cQUbbz,

with @ slgnifying the suction quentity, b and 1 wldth and length,
respectively, of the plate section comsidered.

10. The Characteristic Boundery Layer Parameters

As quantitles psrticulerly chaxvacterlstic for the boundary layer ons
defines the dlsplecement thickness

= [ -y =
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thus with (85)

—v0* _ _ _I( .T,o')_l 3T
N s B

2

the momentum thicknsss

3 = 2 A -R\ay
0 Uo Uo
thus
[--} ©0
- 3 T,
2 = 2 (1-\ag* =0 l—U(’U) TaT
v U, T, 2
o] 0
the form paremeter
pe T 0% —v,9
3T, T

and, finally, the wall sHearing stress (p = density, py = i)
T - u(éE)"
oy =0

thus

T 5%
R

-7 5% |
W, v: ‘:a:'* (Ulil y*=0

21

(87)

(88)

(89)

(90)

(o1)

(92)
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1l. The Blasius Solution without Suction

Since the Blasius solution forms the starting point for the entire
calculation, we shall first sketch its determination in our coordinates.
For the numerical calculation of the solution V*(r) of the problem (61)
the method of Adams was used, and 1n particular the extrapolation method
(cf. G. Schulz (reference l4), Nr. 108). For practical calculation with
the calculating machine, the following formula (symbols as in Schulz!
report) is more convenient than the formula (2) (cf. the equation (1)
on p. 116, Schulz) which uses the differences of the function f(x,y)

(93)
+ 1.5416671, _p = 0.3758,_3)

equation (93) operates only with the values of the function f£(x,y) instead
of using their differences. Thils formula was applied with the wildth of
interval h = 0.05 to the system of differential equations following

from (61) .

i -7)

= , TR = W (9k)
T*

The necessary four inltial values were determined by serles development.

If one uses for VV* and V* the expression (72), the uesult obtained
by comparison of coefficients for (61) is

WH =

8 =8 - ar = L
a2 = a3 = a5 =ag = 0, ah = 35
. 5 (95)
b3 = bh = b6 = b7 = 0, b2 =8a4, b5 = Ealah

For determination of the as yet undeterminsd coefficient a3 or by, the
value

£o''(0) = 1.328242 (96)
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was used which can be found in reference 15, p. 551. According to
Howarth, p. 550, formula (2), the variable is

= Z%
7=z (97)

With v, = 0 equation (76) is, when (57) is taken into aonsideration,

transformed into
ur(r) = wuf |5\ ) (98)
i

In our symbols

equation (82) becomes

T,
uy *¥(xy,73) = ?o U*(7) (99)
and (84)
T T
Yo TaT ’ﬁ Tdr
T=|l—= F=VYy] =Vys, = 2V =2 — (lOO)
x2 1 2 @ L U*(T) UO o U‘*(-r) |
Hence (97) i1s transformed into
-
n=yz | & (101)
o TXT)

According to Howarth (reference 15, p. 5i48) f'o('q) is identical with our
velocity TU*, though as function of 1. Thus one has

aux(T aT
£o1t(n) = T &7
dr  dny

L 4
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or, taking (101) into consideration,

qU*(T) _ £, (n) % _ fon(n)\ng*'(rT) (102)

aT

. If one puts here T = q

0, one obtains, taking the development (72) into
consilderation .

a12 = by = £," (02 (103)

For Ilmprovement of the valuss attained by means of Adams' extrapolation
formule (93) the interpolation formula of Adam (Schulz, reference 1h,
p. 121, last formula (8)) was used which, when the differences are eliminated,
appears as follows:

. (k1) _ l(K+l) = h[}-375fm(k) + 0.791667f (i)

. (104)
- 0-20833hfm_2(k) + o.ou1667fm_3(kzl

The numeribal values thus calculated of

2
2ol ou g ib__u?
Uo U on* Uo op*

are compiled at the beginning of teble 1 as function of

n* =7 'Uo/v:C

The characteristlc boundary layer parameters are to be deflned as
in 10. If one introduces as dimensionless variable (cf. also (100))
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-
' 'U T3T *
* = =0 _\2 J4T 105)
k 7 vx J—lj; U*( T) (
2

(this is the quantity 2n used by Howarth, cf. (97) and (101)), there
follows according to (86)

B | s e T _Tar 5
ol [ [ e
2

In analogous menner one obtains, according to (88), for the momentum

thickness
8 \’ ] =J?J ( ) ﬂ) @ (107)
vE 2

o= - 8
T 0o
.Vx :

and the wall shearing stress results, according to (91), as

°()

T * T,
T0 8% _ g%y (2 MO/ (109)
8 UO vx B-q* ,q*___o

The following numerical values result:
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® U T -\
8% [-2 = 1.7207, 2 &% = o,5711
vXx B U,
> (110)
"\lg’- = 0.6641, 8% - o.501
vX 9 W,

12, The Numerlcel Determination of the Approximate
Solution V( T,0) According to the First Method

First, a solution of (68) and (69) was determined for ¢ = 0.l hence,
one hed to put

V(7 =7V ,0) = v*(1)

The series development described in paragraph 8 can be performed according
to the formulas glven there, only the coefficient ds (and hence cl)

remains undetermined. Thus one has to assume first an arbitrary value
of 4 and has to determine it in the end from the second condition (69).

It wlll be usefull to choose d.2 “"b2. The calculation was made in a manner

similar to one applied by Hans Joachim Luckert (reference 16). Two
different values b2 (let us assume b21 and b22) were selected, the

corresponding velues of V(T) for T = 0; 0.05; 0.1: 0.15 were
celculated according to the series (71)- then the two solutions, to be
called Vl(‘l') and VE(T)’ were followed up further by means of Adams?

method as in paragraph 11 (cf. (93) and (104)); the two values boy
and b,, were selected in such a manner that Vl(-.-) > V()

and. VQ(T) < ¥(T) are valid for semall values of T. As soon

as Vi(T) or Vo(T) at a point T, exceeded the function V(T) or
deviated from 1t by more than 1, two mew functions Vjy (r) and V',_L('r)

were Introduced by

V3(T) = w0y (T) + nVp(T), V() = uvy(r) + Vu(r) (111)

-



NACA ™ No, 1205 27

with
N
VAl — Vo) gy
V6To) = V(T ) >
(112)
=V’1|_("'°) "ve(‘ro)’ 1—p
vl(T o) - vz(To) J

V3(T ) > Vi) and Vy(r,) < ¥(r,) were selected so that behind T,
again V’3(T) lies above, Vy(T) below V(T). After calculation of the.
starting values of 'V‘3 and V) required for the Adams method and of the
corresponding derivatives at the points To; T = 0.05; To = 0.1;

end T, — 0,15 according to (111), V3 and V) may be calculated

further according to Adams. Of course V3(T°) = V'l(‘l'o) or vh-(To) = VQ(TO)
may be selected 1f that seems sultable. Possibly the pair V¥ ('r), Vh_(-r)
also must be replaced in the same manner by V, (T), V6(1'), etc. The
calculation was carried through up to a pair of functions V. l(1'), ('r)

until it became evident that for instance Van l(T) with the a.ssumption
2[1-—1( 1) = ¥ .d1d not any longer show a tendency to deviate from the
valus Ut to & noteworthy degree. Thls was shown to occur at 1‘ = 3;

for the larger ¢ values this point shifted to the left (cf. pa.ragra.ph 18).
The desired solution of (68) for o = 0.1 then is

V(T; 0.1; 0.1) = Von 1(7T) (113)

This solution was calculated for all T values, teking the formulas (111)
and (112) into consideration.

However, the accuracy of this V(T: 0.1; 0.1) is not yet sufficient.
Thus V(T; 0.1; 0.05) also was calculated, by subdividing the
interval o = O to o = 0.1 into two pa.rtia.l intervals of half the
width; the numerical treatment was the same.

In order to obtaln an estimate of the accuracy, the ¢ Iinterval of
the width 0.1 Piuslly was divided into four equal parts and
. thus V(T; 0.1; 0.025) obtained. By linear extrapolation one obtained
from
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v(t; 0.1; 0.1) and V(T; 0.1; 0.05)
¥, (7; 0.1) = 2V(7; 0.1; 0.05) — WT; 0.1; 0.1) (114)
furthermore by quadratic extrapolation from

v(T; 0.1; 0.025), V(T; 0.1; 0.05) and V(T; 0.1; 0.1)

V(75 0.1) = 2.666667V(7; 0.1; 0.025)
(115)

- 2V(T; 0.1; 0.05) + 0.333333V(T; 0.1; 0.1)

The functions (11%) and (115) differed at most by onme unit of the third
decimal, their first end second derivatives with respect to T at most
by 2 or 6 units of the third decimal, Finally one put

V(T; 0.1) = Vo(T; 0.1) (116)

In the same way one calculated

v{(T,0) for o« =0.2; 0.33 . . . 3 1.0

using

V(t) = V(7; o — 0.1)

etc.; however, one always puts

V(T,0) = Vi(T; o) Ffor o> 0.1 (117)
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The sub~division of the o 3interval of the width 0.l into four equal
parts was not undertaken. Actually, (verified by the sketches of the
curves), the varilation of V(¥,s) and its derivatives as well as the
velocity variastion calculated from it with its derivatives becomses
more and more wuniform with increasing o values.

13. A Second Approximstion Method

Following, another approximation method will be described which
Jlelds results much more rapldly; it requires only asbout one third of
the time expenditure of the former method and operates with at least
the same accuracy. The problem to be solved is (50), (37). By
interpolation one determines .

-i;—ﬂ L [0.333337(7 ,0 = 3k) + 1.5V(r ,0 — 2k)
g
(117)

— 37(v ,0 — k) + 1.833337(r ,0)]

V(t,0) 1is calculated under the assumption that all V(T,oc — nk) for

=1, 2, 3, &4 are kmown., (Actually this method could, therefore, have
been used already in the calculation of V(T; 0.4). For v(r, c) one
first determined by extrapolation the approximate value

v*(T,0) =-V(T,0 — bk) + 4(T,0 — 3k) — 6V(T,0 — 2k)

(118)
+ (7,0 - k)
The (50) 1s approximately replaced by
2
82\7 8V21'c+-r_%=21-0_§v_ (119)
1' VV* da

If one puts according to (117)
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g(r) = L2 [- 0.33333V(r ,0 — 3k) + 1.5V(r,0 — 2k) + 3V(r,o — k)| (120)

Va*k
equation (119) is transformed into 2
%V . Wfate+ T3 _1 o2
LS AP —2)-1.83333 82 v = g(r) (121)
S U LA K\T*

This equation 1s solved in the manner described in perasgraph 12 with the
boundary conditions

V(0) = 05 V(=) = b (122)

Split into a system of differential equations of the first order, it will
appear as follows: '

V=W

Wt =-w |2
V¥

3 2

2Tg + T 1 oTCg
=1+ 1.8333 v T (123)

T 1333 —— + &(T)

|20ne also could have determined oV(T,o)/dc instead of according
to (117) by interpolation fram

V(T,0 ~ k), V(T:U -~ 2k), V(T ,0 ~ 3k)1 V(T:U ~ Lk)

by extrapolation. In place of (121) one would then have cbtailned

for V(T7,0) a linear differential equation of the second order in which
the term with V 1s missing and which thus can be solved by quadratures
(Simpson's rule). This method mey perhaps seem more convenient to many
readers.:
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For determination of the starting va.lﬁas for Adams' method one again
sets up the series developments (70), €71) and analogously

VV"-" = c1¥*r°+ c2*-|2 + e e e+ 65*75 + 0 . (124)
2 6,
V* = 4% +oee o+ EFT 4L L, (125)

According to (118)
dy* = «dy(o — bk) + 4dy (o — 3k) — 64,{0c — 2k) + kd, (o — k) (126)
Furthermore according to (120)
VWRg(t) = T+ L L . (127.)
with

Ay = 20 i— E 0.33333bp(0 = 3k) + 1.5b5(c — 2k) —~ 3by{c — ]:El (128)

The comparison of coefficlents 1s made, instead of with (121), to better
advantege with

2
J7= z_i% + sﬁ oTg + T — %xjv*) — 1.83333 2';{“ v =\T¥g(T) (129)
T

One obtalns
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\
d.3(0') = - _IEEL(Q
3cq %
a,(c) = __(302* + 60)d3(c) (130)
801*
Ay —u(Q — 366667 %)dg(c) + 303*63(0) + 8(o + cn*)dy (o) r
d5(o) =
1561*
) /
It 1s useful to select for the arbitrary d,(o)
do(o) & do* (131)

The first calculation according to thils method was carried out for o = 1.2
and k = 0.2; the maximum difference between V and V* amounted to less
than 5 unlts of the fourth decimal. Nevertheless one must not think the
application of Adams' method superfluous; it should be recalled that one
obtains In this manner

JV/3T and /TR

with appropriate accuracy which 1is not well possible by means of extrapolation.
And some time, of course, this good agreement between V and V* does

have to stop. For ¢ = 1.6, for instance, the difference was already one

unit of the third décimal.

The following o +values were treated according to the method
described above:

o =1.2; 1.h; 1.6; 2.0; 2.4; 3.2; 4.0
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1k. The Calculation of the Reduced Veloclty
and Its Derivatives

According to (75) and (82) one finds immediately

=1 =&
Ulc’-2 v(T) -2U('r)

33

(132)

first as a function of T. The quantity y* desired as lndependent
variable instead of T was calculated according to (85) by means of

Simpson's rule. TFurthermore one obtains, agaln by means of (85),

10w _ 1 dud _1wWm V(T _w(T)

Uy, 3y* U, or oy* 2 2W(r) 2ot &t

and according to (71)

..L@—:Eg. for T =0
any* bho

In the same way one calculates

1 Pu _TW(r) —W(T) ¥W(T) _ 1 (TW' —W)/T
2

Uy ay*° 872 20T  16¢ T3
and

1Pu 1

3Cld.3 for T =0
U 3992 164°

(133)

(13k)

(135)

(136)

The quantity W!'(T) appearing in (135) was already determined in the

calculation according to Adams' method.

Table 1 added, for the various values of

E = 1/20°
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the calculated numerical values of

w/Uy, Uy tdu/dy* and U, L3 oy

ag a function of y¥ including the Blaesius profile for ¢ = O and the
asymptotic suction profile (cf. (5)). Concerning the accuracy of all
tables 1t should be noted that the last decimal glven cannot always be
fully guaranteed; particularly for smaller values of the lndspendent
varlable small ‘insccuracles in the last decimal may occur3. In the
following way one obtalns emother estimate of the accuracy of the
numerical material. Fulfilment of Prandtl's boundary layer equation (2)
for y = 0, that is at the plate, ylelds the result that there must be

In the approximate calculation this condition was not used.

Fig. 7 shows a sketch of u/U, as a function of

T*¥ = voyh

The veloclty dlstributlions approach for large & +the asymptotic suction
profile ( &=«). In fig. 8 the curves u/U; againet y/B* are

1llustrated wlth a shifted starting point. One cen see that these curves
hardly differ in shape. The curves of

5*/Uo_lau/ay

illustrated in fig. 9 in the same manner, have a slightly more variled
aspect, whereas

Fu/3y>

The numerical celculations were verified by Mr. H. Schaefer on the
basis of the so—called momentum control
To(x) o 48
— =0, — = voU,
p °© ax °°
it proved useful to integrate thils equation in the x dlrection. Agreement
according to the accuracy indicated above resulted.
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(fig. 10) for the different values of the parameter & shows an entlirely
different shape.

The characteristic boundary layer parametérs
v 8%/v and —v S/v

result from (87) and (89), respectively, by meens of Simpson's rule.
Thereafter one may calculate immedietely the form peramster 6*/\3
according to (90) and, according to (92), easily

Tod*/ulo

With (85) taken into consideration, there follows immediately from (87
and (106) or (89) and (107), respectively,

= 1.7207 (137)
Blaglius
and
a o).
_—— U,
v = g\[=_ = 0.6641 (138)
d.\fé— 5=0 VX|Blasius

the numerical values were taken from (110).

The four characteristic constants are to be found in table 2 as
function of & and VE , respectively. Fig. 11 gives an illustration
by meens of a sketch; the tangents at the starting point according to
equations (137) and (138) are plotted there.

15. The Stream Line Pattern

As stresm fundtion ¥ we shall introduce the stream function WV(&,y*)
with the use of the dlmensionless coordinates; 1t is defined by
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ET Ty T,
For that purpose ome puts
¥ = é— (=vo ) ¥ (140)
Actually, according to (83) and (85),
£ = 2 (~ 7)o (141)
hence according to (140), (13), end (9),

V1 v ot 2 v

ANy YRS -

3t 2 M ()2 o

furthermore according to (84) and (85)

y* = (= vg) Yo (1k2)

thus according to (140), (13), and (8)

¥ _ 1 (~v.) No 1 _m
dy* 2 ° Byé -vo T,

The numerical calculation of the function V¥ may be carried out as
follows: From (79) one concludes

¥ = Vg‘fg ~VoXz

with (83) there results
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v, = __3_72 * Ev—
o o
thus according to (1k0)
¥ o= é-c('r2 + o) (143)
This value corresponds to
E = % o and y*(r,0) (1hh)

the latter has to be calculated according to (85).

According to the tables calculated in this way the pattern of the
gtreaem lines ¥ - const. was constructed by means of limear interpolation.
Tt must be noted that formula (143) yields for t =0 and hence o =0
only the singular stream line (ome point) ¥ = O with y* =0 (cf. (85)).
Since, however, for & = 0, w/U_ must equal 1, one has because of the

o
second equation (139)

¥ (0,5%) = y* : (1k45)

This result is naturally yilelded also by our system of formulas:
according to (85), namely,

-
= _ _rar
c=* U(T,0) (146)
0
whereas from (143) follows
Y.l (t2 +%0) (147)
(o] 2

The right side of (146) goes, due to the monotome growth of U(T,0) as
function of + from O to 2, with increasing 7 from higher values
toward
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go that for oc—»0 and large T (and only these have to be considered
for o -0, according to (143),) the right sides of (1L6) and (1k7) agres.
That, however, leads to (1u5).

Fig. 12 presents the stream line patterm, fig. 13 a partial section
for E—values from O to 1 in magnified scale., Particularly noteworthy
1s the steepening of the stream lines at the beglnning of the plate & =0

where all stream lines have a vertical tangent (cf. also paragraph 16).
All stream lines approach the wall vertically, since there v = Vg

and u = 0.

16. The Veloclty Component Perpendicular to the Wall

The veloclty component

perpendicular to the wall resuits from (139). One calculates

¥ _o¥d oy or (148)
08 Jdo ot T d¢

Now, according to (85),

at = gdo, dy* = 20 —— a7 + or* do (1k9)
U(T,0) o
wlth
.
oU(T,o
T aT
?ﬁ:z*_—.ggf do (150)
do ¢ o TU2(1,0) i

By further calculation one obtains from (1k9)
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R ) (150)
Since from (143) follows
¥ L2y, Xoor (152)
3 2 3T
one obtains, sccording to (148},
_%=_g_g=;-_c(72+gc)_ﬂ%:ﬂ%? (153)

This is the formula for calculation of the velocity component perpendicular
to the wall. Jy*/dc can be determined by interpolation, since 7*(T,0)
was required anyway for the former calculations.

For T = 0, where
U(0,0) = 0 and Jy*(0,0)/dc =0

neceggarlly follows from (153) V/—VO = =1, that is Vv = A For T ;é 0
and o - O the decisive factor is, according to (153) and (150),

1im 11 .2 _Ugxr _ 1im iy ]_'.TE_U a7 (154)

equation (85) was taken into consideration. Due to the monotone growth
of U(T,s) from O to 2 with T the bracket is negetive so that one
obtalns

Y _ =4 w for T =0 and o =0 (155)

This, however, measns nothing else but the steepening of the stream lines
for £ =0 polnted out at the end of the preceding paragraph. Moreover,
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one may conclude from (154) in connection with the two equations (85),
that for ¢ 40 and y* different. from zero

T
T
o V2ET o o o U(T,0) 2

Instead of calculating 1im T - * i1t is sufficient to substitute that
vyalue T for which U(*,0) = 2 1s satisfied with adequate accuracy.
According to the calculations described in paragraph 11 one can

put T¥ = 3. Then one obtalns

v 1 Tar _
—'V'o = VE U—_(T ’O) l"o5 + e e o
2

- 2
@- E*B'L(3)‘]§ )'".5]+-0-

-‘Y*Bz being the value defined by (105). The numerical calculation gives

the result

v 0.8448 +

—y e . (156)

For performing the calculatlon of the By*/aor for 't > 3 appearing
in (153) one should further note that, according to (85),

M) = 7(3) + £ (12 = 9) (12 3) (157)

Hence follows lmmedistely

ow¥r) _o¥3) 12 _9) (2 3) (158)
3 o 2
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and thus from (153) that

_j_)_V ) - V‘——l(3 - for T Z 3 (159)
Vo Vo :

In fig. 14 the values of v/v, are plotted as functlon of y* for
the various values of E.

17. The Drag of the FPlate

The total frictlon drag for the plate of the wildth b and the
length 1 wetted on one slde 1is

W=b | To(x)ax (160)

If one defines in the customary menner the coefficlent of the friction
drag by '

. o = —— Wg (161)
-0 b
p ©o°
and puts
T Toa* | T
£(8) = == = wlo _ _ __© (162)
O - VOB* p(—vo) Uo



4o . NACA TM No. 1205

(regarding the value T,, for the “asymptotic solution" (reference 6)
(also see paragraph 18) cp becomes with

\2 '
gy = (-2} Zob _ g 2Tl (163)
UO v v
gl
- T -V
=p 9o L1 2 a4t = 2 — F(t;) = 2c F(E 16k)
°f Uo 51 Toeo Uo- ( Z) Q ( Z) (
. (0]
with ¢
2
PE,) = & £(t)at (165)
TRy

One concludes immediately:

For EZ -+ ® one obtains

-V
PE,) 21, cp 2 U—°= Cpe= 2cq
(o]

for &; 5 0 one obtains

m(g,) 5 Q:664, o 5o 13082 _ l.3pf
ng Uy I/gz /Uoz
7

The filrst 1s the drag law of the asymptotic solution, the latter Blasius'
drag law for the case without suction. The drag law in the entrance
region is given by equations (163) and (164). The drag coefficients for
varlous mass coefficients cq coincide in ome curve when
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cr/cpe = Cpfacy = F(E,)
is ploﬁ%ed egainst
2 =
cq UtV = &,

(Fig. 15).

For calculation «of the integral (165) one introduces according
to (85) o as integration variable:

g
1
F(E,) = 22 £1(o)oda (166)
207 ,lo
with
200 =ty and (o) = £(8) (167)

According to (87) and (92) as well as to (106), (109) and (110)

O*v ' T g%
-l 172070 . . ., =~ =057k + . . .
M y2 uU,

hencs

F(E;)

1 .
_2—. \]EO_'S_EL.EG_U.F._.:%%'.F...
52" o 1.7207 o3 1.7207

(168)

0.6641 ~=—

Ve
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in agreement with the statement made in conmection with (165). The integral
appearing in (166) 1s a definite integral and was evaluated according to
Simpson's rule; first with the wldth of interval h = 0.2; thus one
obtalned the values of F(§,) for o, =0, 0.2, 0.4, . . . From them the
value of F for oy = 0.1 was determined according to Newton's *inter—
polation formula; by repeated successive application of Simpson's rule

the F values for o3 = 0.3, 0.5, 0.7, « . « wore obtalned.

The last column of table 2 gives the values of the function F(§,).
Fig. 15 shows a sketch of this function. In fig. 16 the curves lO3 cp
are plotted as function of TUgl/y with cq = —~vo/U, a8 parameter; for

comparigon the curves are drawn as dashed linss which illustrate for the
flow without suction the translition from laminar o turbulent flow or,
respectively, the fully turbulent flow (reference 17).

The dlfference between the fully turbulent drag curve and a
curve cq = const. glves the drag reductlon by means of keeping the

boundary layer leminar, under the presuppositlion that the laminer boundary
layer is stable for the respectlive mass coefficient. that 1s, that no
trangition to the turbulent flow type occurs®,

18. The Asymptotic Solution

According to Schlichting (reference 6) the problem (2), (3) is solved
by the expression

VvV =Vg, u-= U'o(l - e"'y*) (169)

hInformation on the mags coefficients requlred for maintenance of a
laminer boundary layer ls given in an Ilnvestligatlion by A. Ulrich

(see reference 13) in which the laminar velocity profiles calculated
in the present report were Investigated for stebility. The mass
coefficlent cQ Pt =1,2 X 10_4 wag found to be sufficient for the

c
maintenance of a laminar boundary leayer. Hence reductions in friction
drag of the order of magnitude of TO to 80 percent of the fully turbulent
friction drag result for the Reynolds number 1in the region

6

Uth = 5x10° to 108

Important in practice.
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which also satisfies the boundary conditions (U4) with the exception of
the fourth, the latter only for y*¥->«, With increasing y¥* the
individual velocity profiles u/Uo ‘will tend toward this "asymptotic

golution" (169). We shall reconvert (169) to our calculation
coordlnetes ¢ and T:

1-2 e T, y*=—n (1 -1
U, Ug

One tekes (85) and (132) into consideration:

(a1 y7) (170)

T4T
20 —_
o V¥
Differentiation with respect to T gives

o 3 (VD) LV avy

- AL LU

N AN
| 1 2\/?7' l_é‘ﬁ

and integration

VW + 2in ( —% ﬁ) = —crr2 (171)

. The additive integration constant which actually should appear on the
right must disappeer since according to (170) for T = 0 V'V also must
dlsappear.

From (171) one concludes for instance: For constantT V V tends
with growing o increasingly toward 2; this 1s the reason for the remark
thade in paragraph 12 that the quantity called Tl there decreases with

growing «c.

Equation (171l) assumes a clearer form if one introduces according
to (33), (34) and (49) X =and Y as independent variables:
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VR + ZZn( —% \fﬁ)=—x : (172)

This could have been confirmed directly from (47).

In all figures the values referred to the asymptotic solution which
can easglly be celculated are marked.in. It 1s shown that for o =4 all
flow characteristlcs lie sufficlently close to the corresponding values of
the asymptotic solution.

SUMMARY

A general calculation method 1s given with which to determine the
boundary layer developing along an infinitely extended flat plate under
the influence of an arbltrary suction or blowing lew. For the specisl
case of homogeneous suctlon the numerical calculatlon of the velocity
within the boundary layer ls performed completely. Two numerical methods
are applied which are both fundamentally based on the approximate solution
of an ordinasry linear differentisl equation of the second order for the
calculation of each velocity profile vertical to the plate; thus one
sttalns a suffliciently accurate determination of the first and second -
derivatives of the veloclty vertlical to the wall as well. Both methods , .
can also be applied for the continuation of an arbitrarily Prescribed
velocity profile.

Translated by Mary L. Mahler,
National Advisory Committee
for Aeronautics
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TABLE T

THE VELOCITY DISTRIBUTION WITH ITS FIRST AND

SECOND DERIVATIVE FOR VARIOUS ¢£

kg

¢ =0; &=0Blaslus g =0.1; £=0.005

pey/lel w1 2 Pul o N ow | Ldu |l
VX Uo To on* |To on*2 Y Uo Uo Oy* | To Oy*2

0 0 0.332 0 0 0 5.322 | -5.329
0.2064 | 0.0685 | 0.332 { -0.001 0.0137 0.0726 | 5.248| -5.481
Cc.4128 | 0.1370 | 0.331 | -0.005 0.0275 0.1445 | 5.169| -6.100
0.6193 | 0.2053{ 0.330 | -0.011 0.041k4 0.2156 | 5.077| =-T7.149
0.7935 | 0.2733 | 0.327 | -0.018 0.0554 0.2858 | L4L.968| -8.595
1.0007 | 0.3k06 | 0.322 | -0.028 0 .0694 0.3546 | 4.835| -10.389
1.2088 | 0.4069 | 0.315 | -0.040 0.0836 0.4220 | 4.673 | -12.459
1.4179 | 0.4718 1 0.305 | -0.053 0.0979 0.4874 | L.79| -1k.705
1.6286 | 0.5348 | 0.293 | -0.066 0.1123 0.5505 | 4.250 | -17.002
1.8412 | 0.5955 | 0.277 | -0.079 0.1269 0.6108 | 3.985 | -19.204
2.0563 | 0.6532 | 0.259 | -0.092 0.1418 0.6678 | 3.685| -21.150
2.274k | 0.7OTH | 0.238 | -0.102 0.1569 0.7210 | 3.353| -22.676
o.hg6lk | 0.7575 | 0.214 | -0.109 0.1723 0.7699 | 2.995| -23.626
2.,7227 | 0.8032 | 0.189 | -0.113 0.1881 0.8142 | 2.620| -23.880
2.95u | 0.8440 | 0.163 | -0.113 0.2043 | 0.8535 | 2.237| -23.361
3.1922 | 0.8795 | 0.136 | -0.109 0.2209 0.8875 | 1.858] -22.062
3.4371 } 0.9097 | 0.111 | -0.100 0.2381 0.9163 | 1.495| -20.051
3.6900 | 0.9347 | 0.087 | -0.089 0.2558 0.9398 | 1.161] -17.472
3.9519 | 0.9545 | 0.065 | -0.075 0.2743 0.958k | 0.866| -14.537
4.2237 | 0.9697 | 0.047 | -0.060 0.2934 0.9725 | 0.617| -11.491
41.5063 | 0.9808 | 0.032 | -0.045 0.3134 0.9827 | o.ke5| -8.586
k.807 |} 0.9885 | 0.021 | -0.032 0.3341 0.9898 | 0.267| -6.027
5.,1074 | 0.9935 | 0.013 | -0.022 [ 0.3558 0.9943 | 0.160} -3.949
5.4271 | 0.9966 | 0.007 | ~0.013 f 0.378k 0.9970 | 0.089} -2.399
5,7603 | 0.9984% | 0.00% | -0.008 | 0.4020 0.9986 | 0.046 | -1.342
6.1072 | 0.9993 | 0.002 | -0.004 § 0.4265 0.9994 | 0.022| -0.690
6.468 | 0.9997 { 0.001 | -0.002 0 .4520 0.9998 [+ 0.009| -0.323
6.8428 | 0.9999 0 -0 .001 0.478 0.9999 | 0.004]| -0.136
7.2317 | 1.0000 0 0 0 5060 1 0.001|{ =-0.051
7.6348 1 1.0000 0 0 0.5344 1 o} -0.012
8.0519 | 1.0000 0 0 0.5640 1 0 -0.006
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TABLE T.- Continued
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THE VELOCITY DISTRIBUTION WITH ITS FIRST AND

SECOND DERIVATIVE FOR VARIOUS ¢&

o =0.2; £=0.02 o =0.3; £ =0.045
7% = oYl u |1 du |1 2°u 7% = VoY a |1 0w | 1 o2u
v To |Uo 35* |Uo ory*2 v Uo [Uo Oy*| To 3y%2
0 o] 2.98 | -2.96 0 0 2.216| -2.20
0.0260 | 0.0766 | 2.910 | -2.94 0.0370 0.0805| 2.136! -2.15
0.0522 | 0.1519 | 2.831 | -3.04 0.0745 0.1591| 2.055| -2.14
0.0787 | 0.2257 | 2.748 | -3.24 0.1125 0.2356} 1.973| =-2.19
0.1054 | 0.2980 | 2.658 | -3.53 0.1509 0.3098| 1.888| -2.27
0.1324 | 0.3684 | 2.558 | -3.90 0.1899 0.3817] 1.797| -2.38
0.1597 | 0.%310 | 2.445 | -h.27 0.229 0.4510| 1.701| =-2.49
0.1874 | 0.5027 | 2:319 | -k.79 0.2698 05174 | 1597 -2.67
0.2154 { 0.5658 | 2.178 | -5.25 0.3107 0.5805| 1.485| -2.79
0.2439 | 0.6257 | 2.023 | -5.67 0.3525 0.6400| 1.365| -2.91
0.2730 | 0.6820 | 1.852 | -6.02 0.3951 0.6956 | 1.239| =-3.00
0.3026 | 0.73k2 | 1.670 | -6.26 0.4388 0.7468 | 1.107| -3.04
0.3329 | 0.7820 | 1.478 | -6.35 0.4837 0.7933] 0.972] =-3.01
0.3640 | 0.82hk9 | 1.282 | -6.28 0.5297 0.83k9| 0.835] -2.92
0.3960 | 0.8627 | 1.08% | -6.02 0.5772 0.8713| 0.700[ -2.75
0.4290 | 0.8952 | 0.893 | -5.59 0.6262 0.9024 | 0.571} -2.51
0.4631 | 0.9225 { 0.712 | -5.00 0.6770 0.9283 ]| 0.451f -2.21
0.4984 | 0.94k2 | 0.548 | -Lh.29 0.7297 0.9ko2 | 0.344] -1.87
0.5351 | 0.9621 | 0.405 | -3.52 0.78L45 0.9654 | 0.2521 -1.51
0.5733 | 0.9751 | 0.285 | -2.74 0.8416 0.97751:0.1761 -1.1€
0.6131L { 0.9845 | 0.191 | -2.02 0.9011 0.9861| 0.116( -0.84
0.6546 | 0.9900 | 0.121 | -1.40 0.9633 0.9919| 0.072| -0.58
0.6979 | 0.9950 | 0.072 | -0.90 1.0282 0.9956 | 0.043] =~0.367.
0.7431 | 0.9974 | 0.039 | -0.54 1.0959 0.99781¢ 0.023} -0.217
0.7902 | 0.9988 | 0.020 | -0.299 1.1665 0.9990 | 0.012} -0.119
0.83g2 | 0.9995 | 0.009 | -0.150 1.2401 0.9995 | 0.005{ -0.059
0.8902 | 0.9998 | 0.00k | -0.068 1.3166 0.9998| 0.002} -0.027
0.9432 | 0.9999 { 0.001 | -0.027 1.3961 0.9999} 0.001} -0.011
0.9982 | 1 0.001 | -0.011 1.4786 1 0 -0 .00k
1.0552 | 1 0 -0 .00% 1.5641 1 o] -0.001
1.1142 | 1 0 -0.001 1.6526 1 0 -0.001
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THE VELOCITY DISTRIBUTION WITH ITS FIRST AND

SECOND DERIVATIVE FOR VARIOUS &
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= 0.k; & = 0.08 o =0.5; £ =0.125
. o =7 u 1 du |1 d2u . to¥ u 1du |1 Pu
TITTV % | Gye | T T | |G| T e
o} 0 1.835 | —-1.82 0 0 1.612 | -1.60
0.0471 0.0843| 1.751 | —1.75 0.0562 0.0882 | 1.525 | -1.52
0.0948 0.1661| 1.669 | —1.72 0.1135 0.1730 | 1.439 | —1.47
0.1434 0.2452 | 1.586 | —1.70 0.1718 0.2545 | 1.355 | —-1.k43
0.1928 0.3214 | 1.502 | -1.71 0.231%4 0.3327 | 1.271 | -1.40
0.2430 0.3947 | 1.415| —-1.73 0.2921 0.4b073 | 1.187 | -1.38
0.2941 0.4648 | 1.326 | .77 0.3542 0.4783 | 1.101 | —1.37
+0.3463 0.5315| 1.233 | —1.80 0.4176 0.5454 | 1.014 | -1.37
0.3995 0.5946 | 1.136 | —1.84 0.4826 0.6084 | 0.926 | —1.36
0.4539 0.6537 | 1.035 | -1.86 0.5492 0.6671 | 0.836 | —1.34
0.5097 0.7085 | 0.931 | —1.87 0.h176 0.7211 | 0.745 | -1.31
0.5669 0.7587 | 0.825 | -1.85 0.6880 0.7704 | 0.654 | —1.27
0.6257 0.8041 { 0.717 | —1.80 0.7605 0.8145 | 0.564 | —1.21
0.686L 0.8443 | 0.611 | —-l.71 0.8354 0.8534 | 0.476 | —1.13
0.7490 0.8793 | 0.508 | —1.58 0.9129 0.8871 | 0.393 | —1.03
0.8138 0.9090 | 0.411 | —1.k2 0.9933 0.9154 | 0.315 | —0.91
0.8811 0.9336 | 0.322 | —1.23 1.0768 0.9387 | 0.24h | —0.78
0.9510 0.9533 1 0.2h3 | —-1.02 1.1638 0.9572 | 0.183 | —0.64
1.0238 0.9684 | 0.176 | —0.82 1.2545 0.9713 | 0.131 | —0.50
1.0998 0.9797 | 0.122 | —0.62 1.3493 0.9816 | 0.090 | -0.376
1.1790 0.9876 | 0.080 | —0.uhk 1.4482 0.9889 | 0.058 | —0.266
1.2618 0.9928 | 0.049 | -0.299 1.5516 0.9937 | 0.036 | —0.177
1.3483 0.9961 | 0.029 | —0.186 1.6596 0.9966 | 0.020 | —0.110 |
1.4385 0.9981 | 0.015 | —0.110 1.772k4 0.9983 | 0.011 | —0.063 ;
1.5327 0.9991 | .0.008 | —0.059 1.8900 0.9992 | 0.005 | —0.033 !
1.6307 0.9996 | 0.00k | -0.029 2.0126 0.9997 | 0.002 | -0.016
1.7328 0.9999 | 0.001 | —0.012 2.1h01 0.9999 | 0.001 ; —0.007
1.8388 1.0000 | 0.001L | —-0.005 2,2726 1.0000 0 —0.003
1.9488 1 0 ~0.001 2.4101 1 0 —0.001
2.0628 1 0 0 2.5526 1 0 ~0.001
2.1808 1 0 0 2.7001 1 0 0
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THE VELOCITY DISTRIBUTION WITH ITS FIRST AND

SECOND DERIVATIVE FOR VARIOUS ¢

o= 0.6; £ =0.18 og=0.7T; £ =0.245

7| uw |1 3w |13 | 7| 1 du |1 32u

o} o} LUET | <145 0 o} 1.366 | —-1.35
0.0647 0.0919 | 1.376 | —1.37 0.072k 0.0955 | 1.271 | —1.27
0.1307 0.1798 | 1.287 | -1.30 0.146M4 0.186Lk | 1.180 | —1.19
0.1982 0.2637 |- 1.201 | -1.25 0.2225 0.2727 | 1.092 | —1.12
0.2672 0.34%37 | 1.117| -1.20 0.3005 0.3545 | 1.007 | —-1.07
0.3379 0.4197 | 1.033 | —1.16 0.3805 0.4317 | 0.923 | —1.02
0.4102 0.4949 | 0.950 | -1.13 0.4627 0.5042 | 0.842 | -0.97
0.484L 0.5593 | 0.868 | -1.101 0.54T71 0.5719 § 0.762 | -0.93
0.5606 0.6218 | 0.785 | —1.07 0.6341 0.6347 | 0.683 | —0.88°
0.6388 0.6800 [ 0.703 | —1.04 0.7237 0.6924 | 0.606 | —0.8%
0.7194 0.7333 | 0.621 | -0.99 0.8161 0.7T450 | 0.531 | ~0.79
0.8026 0.7815 | 0.540 | —0.9k 0.9117 0.7922 | 0.458 | —0.Th
0.8884 0.8245 | 0.462 | —0.88 1.0106 0.8340 | 0.388 | -0.68

0.9773 0.8621 | 0.386 | -0.81 1.1132 0.8704 | 0.322 | —0.61
1.0695 0.80kh | 0.316 | —-0.73 1.2206 0.9013 | 0.261 | —0.54
1.1653 0.9215 | 0.251 | —0.63 1.3316 0.9270 | 0.205 | —0.462

1.26L9 0.9435 | 0.193 | —0.532 1.4473 0.9479 | 0.156 | -0O.
1.3689 0.9608 | 0.143 | —0.413 1.5680 0.9642 | 0.115 | —0.307
14774 0.9735 | 0.10L } -0.33k | 1.6942 0.9764 | 0.081 | -0.
1.5907 0.9835 | 0.069 | —0.2L47 1.8262 0.9852 | 0.054 | ~0.171

1.7093 0.9901 | 0.04%4 | —0.172 1.9643 0.9907 | 0.034 | -0.117
1.8332 0.994%4 | 0.027 | —0.113 2.1088 0.9951 | 0,020 | —0.076
1.9628 0.9970 | 0.015 | —0.069 2.2599 0.9974 | 0.011 | —0.046
2.0981 0.9985 | 0.008 | —0.039 2.4177 0.9987 | 0.006 | ~0.026
| 2.2392 0.9993 | 0.00k | —0.020 2.5823 0.9994 | 0.003 | —0.013
2.3863 0.9997 | 0.002 | —0.010 2.7539 0.9998 | 0.001 | —-0.006
2.5393 0.9999 | 0.001 | —0.00k 2.932L 0.9999 | 0.001 | —0.003
2.6983 0.9999 0 -0.002 3.1179 1 0 ~0.001
2.8633 1 0 —0.001 3.3104 1 0] —0.001
3.0343 1 0 0 3.5099 1 0] 0
3.2113 1 o] o] 3. 7164 1 0] o]
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o =0.8; & =0.32 g =0.9; £ =0.405
V3 u 1 du 1 d®u V¥ u 1 du 1. Ry
y* = — — — y* = — — -—_—
v To | Uo O7* | Up ay*@ v U, | T, o5* | T, 3y *°
0 0 1.202 | -1.28 0 0 1.237 | —1.23
0.0797 0.0990 | 1.194 | -1.19 0.0865 0.1025 | 1.135 | —1.13°
0.1616 0.1929 { 1.100 { =1.11 0.1756 0.1993 | 1.038 | —1.0k
0.2457 0.2815 | 1.010 | —1.03 0.2673 0.2902 | 0.946 | —0.96
0.3321 0.3651 1 0.923 | —0.97 0.3618 0.3754 | 0.859 | -0.89
0.4211 0.4434 | 0.840 | —0.91 0.4592 0.4549 | 0.775 1 —0.83
0.5126 0.5166 | 0.760 | —0.85 0.5597 0.5287 | 0.695 | —0.76
0.6070 0.5846 | 0.682 | —0.80 0.6635 0.5968 | 0.619 | —0.T1
0.7043 0.6472 | 0.606 | —0.75 0.7709 0.6593 | 0.546 | —0.65
0.8048 0.7044 | 0.533 | —0.70 0.8820 0.7160 | 0.476 | —0.60
0.9088 0.7562 | 0.463 | —0.65 0.9972 0.7670 | 0.410 | —0.55
1.0165 0.802k | 0.396 | —0.60 1.1168 0.8122 | 0.347 | —0.495
1.1283 0.8431 | 0.333 | ~0.54 1.2411 0.8517 | 0.289 | —0.Lk1
1.244) 0.8782 | 0.27h | —0.4T79 1.3706 0.8856 | 0.236 | —0.386
1.3652 0.9079 | 0.219 | —0.416 1.5055 0.9141 | 0.187 | -0.331
1.k912 0.9324 | 0.171 | —0.352 1.6464 0.937+ | 0.145 | —0.276
1.6228 0.9521 | 0.129 | —-0.288 1.7937 0.9559 | 0.108 | —0.222
1.7603 0.9673 | 0.094 | —0.227 1.9478 0.9701 | 0.078 | —0.173
1.9041 0.9786 | 0.065 | —0.171 2.1093 0.9807 | 0.054 | —0.129
2.0547 0.9867 | 0.043 | —0.123 2.278k4 0.9881 | 0.035 | —-0.091
2.2123 0.9922 | 0.027 | —0.083 2.4555 0.9930 | 0.022 | -0.061
2.3773 0.9957 | 0.016 | —0.053 2.6410 0.9962 | 0.013 | —0.038
2.5498 0.9977 | 0.009 | —0.032 2.8350 0.9980 | 0.007 { —0.023
2.7301 0.9989 | 0.005 | —0.018 3.0378 0.9991 | 0.004 | —0.012
2.9183 0.9995 | 0.002 | —0.009 3,2404 0.9996 | 0.002 | -0.006
3.1143 0.9998 | 0.001 | —0.00k4 3.4700 0.9998 : 0.001 | -0.003
3.3184 0.9999 0 —0.002 3.6995 0.9999 0 -0.00L
: 3.5304 1 0 -0.001 3.9380 1 0 0
3. 750k 1 0 o] 4.1855 1 0 0
3.9784 1 0 0 4. 4420 1 0 0
h,21h) 1 0 0 L. 7075 1 0 o}
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TABIE I.— Continued
THE VELOCITY DISTRIBUTION WITH ITS FIRST AND
SECOND DERIVATIVE FOR VARIOUS ¢
=1.0; £ = 0.5 =1.2; ¢ = 0,72
~Vo¥ u 1 du |1 32 . _ —Vo¥ u 1 du |1
TITV| G T Gy [TV | T (T (T e
o} 0 1.194 | —1.18 o} 0 1.135 | -1.135
0.0929 0.1060 | 1.089| -1.08 0.1047 0.1127 | 1.022 | —1.022
0.1888 0.2055 | 0.989| —0.99 0.2130 0.2176 | 0.917 | —~0.921
0.2877 0.2986 | 0.895} -0.91 0.3253 . [0.3149} 0.818 | -0.828
0.3898 0.3854 | 0.806 | -0.83 O.hk17 o.kok8 | 0.727 | —-0.7hk4
0.4953 0.4660 | 0.722 | —0.76 0.5625 0.487h | 0.6k2 | —0.665
0.60LL 0.5405 | 0.643 | -0.70 0.6880 0.5629 | 0.563 | —0.596
0.717h 0.6088 | 0.568 | —0.64 0.818L 0.6315 { 0.489 | —0.532
0.8345 0.6710 | 0.497 ! -0.58 0.9541 0.6932 | 0.422 | —0.477
0.9560 0.7272 | 0.430| -0.52 1.0955 0.7483 | 0.359 | -0.424
1.0821 0.7773 | 0.367| —0.472 1.2430 0.7968 | 0.301 | —0.365
1.213h 0.8215 | 0.308 | —0.420 1.3969 0.8391 | 0.249 | —0.316
1.3501 0.8599 | 0.254 | —0.369 1.5578 0.8753 | 0.202 | —0.262.
1.4k926 0.8976 | 0.205 | -0.318 1.7261 0.9056 | 0.160 | —0.228
1.6k15 0.9199 | 0.162 | —0.268 1.9025 0.9306 | 0.136 | —-0.194
1.7971 0.9421 | 0.124 | —0.221 2.0874 0.9505 | 0.093 | -0.154
1.9601 0.9595 | 0.092 | —0.176 2.2814 0.9660 | 0.067 | —0.120
2.1308 0.9778 | 0.065 | —0.135. | 2.4851 0.9775 | 0.047 | —0.086
2.3097 0.9825 | 0.045 | —0.099 2.6989 0.9858 | 0.031 | —0.0%2
2.4973 0.9893 | 0.029 | —0.069 2.9234 0.9915 | 0.020 | -0.043
2.6940 |.0.9938 | 0.018 | —0.046 3.1590 0.9952 | 0.012 | —0.026
2.8999 0.9967 | 0.010 | —0.028 3.4059 0.997% | 0.007 | —0.015
3.115h 0.9983 [ 0.005 | —0.016 3.6643 0.9987 | 0.004 | —0.008
3.3407 0.9992 | 0.003 | -0.009 3.9346 0.9994 | 0.002 | —0.005
3.5758 0.9996 | 0.001 | —0.00k4 4.2167 0.9998 | 0.001 0
I 3.8209 0.9999 | 0.001L | —0.002 L.5107 0.9999 0 0
| 1.0750 | 0.9999 0 | —0.001 | L4.8168 |1 0 0
L 4.3409 1 0 0 5.1348 1 o} o}
[ 4.6159 1 0 0 5.4648 1 0 0
‘4.9009 1 0 0
5.1959 i1 0 o}




NACA ™ No. 1205 55
TABLE I.— Continued
THE VELOCITY DISTRIBUTION WITH ITS FIRST AND
SECOND DERIVATIVE FOR VARIOUS ¢
g=1l.k; £ =0.98 g=1l.6; ¢t =1.28
. - —Vo¥ u 1 3u |1 3 % _ VoY u 1 3du |1 32
7 v T [To 3v* |Uo 5y%@ | 7 v Uo |[To Oy* |To oy¥2
. 0 0 1.094 | —L.09k 0 0 1.068 | ~1.068
0.1153 0.1192 | 0.975 | —0.975 0.1250 0.1254 | 0.943 | ~0.94L
0.2350 0.2293 | 0.865 | -0.868 0.2552 0.2406 | 0.827 { ~0.830
0.3596 0.3306 | 0.763 | —=0.770 0.3912 0.3457 | 0.722 | ~0.726
0.4892 0.4234 | 0.670 | -0.680 0.5331 O.4411 | 0.625 | —0.633
0.6242 0.5079 | 0.583 | —0.599 0.6815 0.5273 | 0.538 | —0.549
0.7650 0.5843 | 0.504 | —0.526 0.8367 0.6045 | 0.459 | —~0.473
0.9119 0.6544 | 0.432 | —0.460 0.9993 0.6731 | 0.387 | —0.406
1.0652 0.71h0 | 0.366 | —0.399 1.1697 0.7335 | 0.324 | —0.345
1.2257 0.7679 | 0.307 | —=0.34k4 1.3485 0.7862 | 0.267 | —0.291
1.3936 0.8148 | 0.253 | —0.204 1.5362 0.8314 | 0.217 | —0.243
1.5695 0.8551 | 0.206 | —0.248 1.7336 0.8693 | 0.173 | —0.200
1.7540 0.8891 | 0.16Lk | —0.207 1.9412 0.9017 | 0.136 | -0.163
1.9476 0.9173 | 0.128 | —0.169 2.1597 0.9277 | 0.104 | -0.130
I 2.1510 0.9%00 | 0.097 | —0.135 2.3898 0.9484 | 0.077 | —0.101
2.3648 0.9579 | 0.071 | —0.105 £2.6323 0.9643 | 0.056 | —0.077
2.5897 0.9715 | 0.051 | —0.079 2.8878 0.9763 | 0.039 | —0.056
2.8261 0.9815 | 0.035 | —0.058 3.1570 0.98L9 | 0.026 | -0.040
3.0748 0.9386 | 0.023 | —0.040 3.4403 0.9908 | 0.017 | —0.027
3.3361 0.9933 | 0.01k |'—0.027 3.7384 0.9947 | 0.010 | —0.017
3.6105 0.9963 | 0.008 | —0.016 4.0517 0.9971 | 0.006 | —0.011
3.8983 0.9981 | 0.005 | —0.010 L. 3804 0.9984 | 0.003 | —0.006
ly.1998 0.9991 | 0.002 | —0.005 4. 7248 0.9993 | 0.002 | -0.003
" 4.5150 0.9996 | 0.001 | —0.003 5.0849 0.9997 | 0.001 | —0.002
4.8kl 0.9998 | 0.000 | -0.001 5.4610 0.9999 0 -0.001
5.1871 0.9999 0 0 5.8530 1 0 "0
5.5kh41 1 ‘ 0 0 6.2610 1 0 0
5.9151 1 0 0 6.6850 1 0 0
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TABLE T.— Continued
THE VELOCITY DISTRIBUTION WITH ITS FIRST AND
SECOND DERIVATIVE FOR VARIOUS ¢
o =2.,0; 8 =2,0 og=2.4; ¢t =2.,88
ooy w1 |1 | oyl w13 |1
7 v Uo |Uo oy* |TUo o5*2 |7 v Uo |Uo 3y* |Uo oy*2
L Y
0 o] 1.036 | —-1.037 o} 0 1.019 | -1.020
0.1422 0.1374+ | 0.899 | -0.900 0.1575 0.1485 | 0.871 | -0.871
0.2914 0.2619 | 0.774 | —0.T775 0.3235 0.2817 | 0.738 | —-0.738
0.4479 0.3740 | 0.662 | —0.66k 0.4986 0.4001 | 0.619 | —0.620
0.6125 0.4743 | 0.561 | —0.565 0.6836 0.5047 | 0.514 | —-0.516
0.7855 " | 0.5633 | 0.471 | —0.476 0.8793 0.5960 | 0.422 | —0.425
0.9677 0.6417 | 0.391 ] —0.398 1.0866 0.6750 | 0.343 | —-0.346
1.1598 0.7100 | 0.322 | —0.330 1.3063 0.7425 | 0.274 | -0.279
1.3624 0.7688 | 0.261 | —0.271 1.5394 0.7994 | 0.216 | —-0.221
1.5763 0.8188 | 0.209 | —0.220 1.7870 0.8467 | 0.168 | -0.173
1.8024 0.8607 | 0.164 | ~0.176 2.0500 0.8853 | 0.128 | —0.133
2.041% 0.8952 | 0.126 | —0.139 2.3295 0.9162 | 0.095 | -0.101
2.2942 0.9231 | 0.095 | —0.108 2.6267 0.9404 | 0.069 | —0.075
2.5617 0.9451 | 0.070 { —0.082 2.942} 0.9588 | 0.049 | —0.05k
2.8447 0.9621 { 0.050 | —0.061 3.2778 0.9725 | 0.034 | -0.038
3.14k0 0.9747 | 0.035 | —0.0kk 3.6337 0.9823 | 0.022 | —0.026
3.4605 0.9838 | 0.023 | ~0.030 4.,0110 0.9891 | 0.01k | —0.017
3.7949 0.9900 | 0.015 | —-0.020 L. hiok 0.9935 | 0.009 | —0.011
4.1476 0.994%2 | 0.009 | —0.013 4.8325 0.9964% | 0.005 | —0.007
4.5193 0.9968 { 0.005 | —0.008 5.2777 0.9981 | 0.003 | —0.004
k.9102 0.9983 | 0.003 | —0.005 5. Théh 0.9990 | 0.001 | —0.002
5.3207 0.9992 | 0.001 | —0.002 6.2387 0.9996 | 0.001 | —0.001
5.7510 0.9996 | 0.001L | —0.001 6.7549 0.9998 0 —0.001
6.2011 0.9999 0 -0.001 7.2949 0.9999 0 0
6.6712 1 0 0 T7.8589 1 0 0
7.1612 1 o} 0 8.4hA9 1 0 0
7.6713 1 o] o] 9.0589 1 0 0
8.2013 1 0 0 9.6949 1 0 o]
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TABLE I.— Continued

THE VELOCITY DISTRIBUTION WITH ITS FIRST AND

SECOND DERIVATIVE FOR VARIOUS €&

o7

g =3.2; £ =5.12

0’=)+00_: § =8.0

ey | w (1313 | . woy] u |1 |1 Fu
v v To | TUp &% |To oge@ | 7 V| T, | Tp % | To oy
0 0 1.009 | -1.01k 0 o} 1.000 | —-0.996
0.1836. 0.1691| 0.839 | —0.843 0.2068 0.1870| 0.814 | -0.811
0.3788 0.3178} 0.690| —0.693 0.428) 0.3488 | 0.653 | -0.651
0.5868 o471} 0.560| —0.562 0.6661 0.4869 | 0.515 | —0.514
0.8086 0.5584 | 0.448 | —-0.450 0.9218 0.6031{ 0.399 | —0.399
1.0456 0.6529 | 0.353| —0.355 1.1973 0.6991 | 0.303| —-0.303
1.2992 0.7319| 0.273 | -0.275 1.hoLT 0.7769 | 0.225 | —0.225
1.5708 0.7969 | 0.208 | -0.210 1.8159 0.8386 | 0.163 | -0.163
1.8619 0.849k | 0.155] -0.157 2.1632 0.8863 | 0.115| —0.115
2.1741 0.8909 | 0.113 | -0.115 2.5387 0.9222 | 0.079 | -0.079
2.5090 0.9229 | 0.080 | -0.082 2.9446 0.948k | 0.052 | -0.053
2.8681 0.9471| 0.056 | —0.057 3.3828 0.9669 | 0.034 | —0.034
3.2528 0.9648 | 0.037 | —0.039 3.8552 0.9795 | 0.021 | -0.021
3.6645 0.9773 | 0.024 | —0.026 %.3633 0.9878 | 0.012 | -0.013
h.10k5 0.9859| 0.015| -0.016 | k.9085 0.9929 | 0.007 | —0.007
4.5736 0.9916 | 0.009 | —0.010 5.4916 0.9961 { 0.004 | —0.004
5.0729 0.9952 | 0.005 | —0.006 6.1134 0.9979 | 0.002 | —0.002
5.6028 0.9973 | 0.003 | =0.003 6. TThh 0.9989 | 0.001L | -0.001
6.1639 0.9986 | 0.002 | —0.002 7.4750 0.999L | 0.001 0
6.7565 0.9993{ 0.001 | —0.00L 8.2153 0.9997 0 o]
7.3808 0.9997 0] 0 8.9955 0.9998 0 0
8.0370 0.9998 0 0 9.8155 0.9999 0 0
8.7251 0.9999 0] 0 10.6756 1 0 0
9.4451 1 0 o} 11.5756 1 0 0
10.1971 1 0] 0 12.5156 1 o] 0
10.9811 1 0 0 13.4955 1 0 0
11.7971 1 o] 0
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TABIE T .- Concluded
THE VELOCITY DISTRIBUTION WITH ITS FIRST AWD

SECOND DERIVATIVE FOR VARIOUS ¢&

= oa,' g = o0
Asymptotic Suction Prefile

- TV u 1 du 1 Pu

v To T, Sr* U, oy*2

o} o} 1 -1

0.2 0.1813 0.81871 -0.8187
0.k 0.3297 0.6703 -0 .6703
0.6 0.4512 0.5488 -0.5488
0.8 0.5507 0.4493 -0.4493
1.0 0.6321 0.3679 -0 .3679
1.2 0 .6989 0.3012 -0.3012
1.k 0.7534 0 .2466 -0 .2466
1.6 0.7981 0.2019 -0.2019
1.8 0.8347 0.1653 -0.1653
2.0 0.8647 0.1353 -0.1353
2.2 0.8892 0.1108 -0.1108
2.4 0.9093 0.0907 -0.0907
2.6 0.9257 0.0743 -0.0743
2.8 0.9392 0.0608 -0.0608
3.0 0.9502 0.0498 -0.0498
3.2 0.9592 0.0408 -0.0408
3.4 0.9666 0.033k -0.0334
3.6 0.9727 0.0273 -0.0273
3.8 0.9776 0.0224 -0 .0224
4.0 0.9817 0.0183 -0.0183
k.2 0.9850 0.0150 -0.0150
bk 0.9877 0.0123 -0.0123
4.6 0.9899 0.0101 -0.0101
4.8 0.9918 0.0082 -0.0082
5.0 0.9933 0 .0067 -0.0067
5.5 0.9959 0.00k41 -0.0041
6.0 0.9972 0.0028 -0.0028
6.5 0.998 0.0015 -0.0015
7.0 0.9991 0 .0009 -0 .0009
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TABLE IT

THE CHARACTERISTIC BOUNDARY-LAYER PARAMETERS:

_VOS*/v: —voﬁ/v, 5*/8:T06*/HU03 F(E)

—v 8% | —wn 9 B* TO¥*
o 3 VE - v T F(e)
Blasius
0 0] 0 o] 0 2.59 | 0.5714 0
0.1} 0.005 | 0.0707 | 0.1140 | 0.0451 | 2.53 | 0.6068 | 10.01k
0.2| 0.02 |0.141 | 0.211k | 0.0855 | 2.47 | 0.6311 | 5.327
0.3] 0.045 | 0.212 | 0.3026 | 0.1246 §2.43 | 0.6706 | 3.768
o.k! 0.08 |0.283 | 0.3808 [ 0.1597 | 2.39 | 0.6988 | 2.994
0.5! 0.125 | 0.354 | 0.h501 | 0.1917 | 2.35 | 0.7258 | 2.532
0.6] 0.18 | o0.424 | 0.5113 | 0.2210 |2.31 | 0.7500 | 2.227
0.7! 0.245 | 0.495 | 0.5660 | 0.2480 | 2.28 | 0.7730 | 2.011
0.8] 0.32 |0.566 | 0.6143 |0.2725 |2.25 |0.7937 | 1.850
0.9| 0.405 | 0.636 | 0.6575 | 0.2949 | 2.23 | 0.8130 | 1.727
1.0| 0.5 0.707 | 0.6954 | 0.3149 |2.21 | 0.8302 | 1.629
1.2 0.72 |0.849 | 0.7613 }{0.3505 |2.17 | 0.8638 | 1.486
1.4 0.98 |0.990 | 0.8121 {0.3802 |2.14 {0.8888 | 1.387
1.6 1.28 (1.131 | 0.8530 {o0.40Okk {2,121 |0.9113 | 1.315
2.0] 2.0 1.41% | 0.9108 | 0.4399 | 2.07 {0.9436 | 1.220
2.412.88 |1.697 {0.9475 |0.4630 [2.05 |0.9658 | 1.161
3.2 5.12 |2.263 | 0.9828 |0.4878 {2.01 |0.991% | 1.0956
k0| 8.0 2.828 |0.9958 {0.4971 '2.00 {0.9961 | 1.063
o0 o o 1 0.5 2 1 1

i
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Figure 1.~ Explanatory sketch; system of coordinates.
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Figure 8.- Sketch of coordinates,
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Figure 9.~ The first derivative of the velocity distribution
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Figure 11,- The characteristic boundary-layer parameters -v a /(f
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Figure 12,- Streamline pattern (total representation). The y-direction is,

compared to the x-direction, increased by the factor 1/5 l/cQ.
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Figure 13.- Streamline pattern; representation at the leading edge of the
plate magnified,
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Figure 15.~ The universal law for the friction drag of the plate with
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homogeneous suction F(gz) = cp /2cQ against ¢, =c QUoz, /V .
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